Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Vascul Pharmacol ; 153: 107231, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37730143

RESUMEN

Göttingen Minipigs (GM) are used as an important preclinical model for cardiovascular safety pharmacology and for evaluation of cardiovascular drug targets. To improve the translational value of the GM model, the current study represents a basic characterization of vascular responses to endothelial regulators and sympathetic, parasympathetic, and sensory neurotransmitters in different anatomical origins. The aim of the current comparative and descriptive study is to use myography to characterize the vasomotor responses of coronary artery isolated from GM and compare the responses to those obtained from parallel studies using cerebral and mesenteric arteries. The selected agonists for sympathetic (norepinephrine), parasympathetic (carbachol), sensory (calcitonin gene-related peptide, CGRP), and endothelial pathways (endothelin-1, ET-1, and bradykinin) were used for comparison. Further, the robust nature of the vasomotor responses was evaluated after 24 h of cold storage of vascular tissue mimicking the situation under which human biopsies are often kept before experiments or grafting is feasible. Results show that bradykinin and CGRP consistently dilated, and endothelin consistently contracted artery segments from coronary, cerebral, and mesenteric origin. By comparison, norepinephrine and carbachol, had responses that varied with the anatomical source of the tissues. To support the basic characterization of GM vasomotor responses, we demonstrated the presence of mRNA encoding selected vascular receptors (CGRP- and ETA-receptors) in fresh artery segments. In conclusion, the vasomotor responses of isolated coronary, cerebral, and mesenteric arteries to selected agonists of endothelial, sympathetic, parasympathetic, and sensory pathways are different and the phenotypes are similar to sporadic human findings.


Asunto(s)
Bradiquinina , Péptido Relacionado con Gen de Calcitonina , Porcinos , Animales , Humanos , Péptido Relacionado con Gen de Calcitonina/metabolismo , Péptido Relacionado con Gen de Calcitonina/farmacología , Porcinos Enanos/metabolismo , Bradiquinina/farmacología , Bradiquinina/metabolismo , Carbacol/metabolismo , Músculo Liso Vascular/metabolismo , Norepinefrina/farmacología , Norepinefrina/metabolismo , Arterias Mesentéricas/metabolismo , Vasodilatación
2.
J Headache Pain ; 23(1): 26, 2022 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-35177004

RESUMEN

BACKGROUND: 5-Hydroxytryptamine (5-HT) receptors 1B, 1D and 1F have key roles in migraine pharmacotherapy. Selective agonists targeting these receptors, such as triptans and ditans, are effective in aborting acute migraine attacks and inhibit the in vivo release of calcitonin gene-related peptide (CGRP) in human and animal models. The study aimed to examine the localization, genetic expression and functional aspects of 5- HT1B/1D/1F receptors in the trigeminal system in order to further understand the molecular sites of action of triptans (5-HT1B/1D) and ditans (5-HT1F). METHODS: Utilizing immunohistochemistry, the localization of 5-HT and of 5-HT1B/1D/1F receptors was examined in rat trigeminal ganglion (TG) and combined with quantitative polymerase chain reaction to quantify the level of expression for 5-HT1B/1D/1F receptors in the TG. The functional role of these receptors was examined ex vivo with a capsaicin/potassium induced 5-HT and CGRP release. RESULTS: 5-HT immunoreactivity (ir) was observed in a minority of CGRP negative C-fibres, most neuron somas and faintly in A-fibres and Schwann cell neurolemma. 5-HT1B/1D receptors were expressed in the TG, while the 5-HT1F receptor displayed a weak ir. The 5-HT1D receptor co-localized with receptor activity-modifying protein 1 (RAMP1) in Aδ-fibres in the TG, while 5-HT1B-ir was weakly expressed and 5-HT1F-ir was not detected in these fibres. None of the 5-HT1 receptors co-localized with CGRP-ir in C-fibres. 5-HT1D receptor mRNA was the most prominently expressed, followed by the 5-HT1B receptor and lastly the 5-HT1F receptor. The 5-HT1B and 5-HT1D receptor antagonist, GR127935, could reverse the inhibitory effect of Lasmiditan (a selective 5-HT1F receptor agonist) on CGRP release in the soma-rich TG but not in soma-poor TG or dura mater. 5-HT release in the soma-rich TG, and 5-HT content in the baseline samples, negatively correlated with CGRP levels, showing for the first time a physiological role for 5-HT induced inhibition. CONCLUSION: This study reveals the presence of a subgroup of C-fibres that store 5-HT. The data shows high expression of 5-HT1B/1D receptors and suggests that the 5-HT1F receptor is a relatively unlikely target in the rat TG. Furthermore, Lasmiditan works as a partial agonist on 5-HT1B/1D receptors in clinically relevant dose regiments.


Asunto(s)
Serotonina , Triptaminas , Animales , Benzamidas , Péptido Relacionado con Gen de Calcitonina/metabolismo , Piperidinas/farmacología , Piridinas , Ratas , Receptor de Serotonina 5-HT1B/genética , Receptor de Serotonina 5-HT1B/metabolismo , Receptor de Serotonina 5-HT1D/metabolismo , Serotonina/metabolismo , Ganglio del Trigémino/metabolismo , Triptaminas/farmacología
3.
J Nucl Cardiol ; 29(6): 3207-3217, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35149976

RESUMEN

AIMS: This study aimed to investigate the potential of different markers to identify adequate stressing in subjects with and without caffeine intake prior to Rubidium-82 myocardial imaging. METHODS AND RESULTS: This study comprised 40 healthy subjects who underwent four serial Rubidium-82 rest/adenosine stress MPI; two with 0mg caffeine consumption (baseline MPIs) and two with controlled consumption of caffeine (arm 1: 100 and 300mg, or arm 2: 200 and 400mg). We report the sensitivity and specificity of seven markers ability to predict adequate adenosine-induced hyperemic response: (1) the splenic response ratio (SRR); (2) splenic stress-to-rest intensity ratios (SIR); (3) changes in heart rate (ΔHR); (4) percentwise change in heart rate (Δ%HR); (5) changes in the rate pressure product (ΔRPP); (6) changes in the systolic blood pressure (ΔSBP); and (7) changes in the cardiovascular resistance (ΔCVR). Adequate stressing was determined as stress myocardial blood flow > 3ml/g/min and a corresponding myocardial flow reserve >68% of the individual maximum myocardial flow reserve obtained in the baseline MPIs. RESULTS: 129 MPI sessions (obtained in 39 subjects) were considered for this study. The following sensitivities were obtained: SSR = 72.7%, SIR = 63.6%, ΔHR = 45.5%, Δ%HR = 77.3%, ΔRPP = 54.5%, ΔSBP = 47.7%, and ΔCVR =40.9%, while the specificities were SSR = 80.9%, SIR = 85.0%, ΔHR = 90.4%, Δ%HR = 81.6%, ΔRPP=81.1%, ΔSBP = 86.4%, and ΔCVR =90.4%. CONCLUSION: The image-derived and physiological markers all provide acceptable sensitivities and specificities when patients follow the caffeine pausation before MPI. However, their use warrants great care when caffeine consumption cannot be ruled out.


Asunto(s)
Adenosina , Imagen de Perfusión Miocárdica , Humanos , Adenosina/farmacología , Vasodilatadores/farmacología , Cafeína/farmacología , Imagen de Perfusión Miocárdica/métodos , Circulación Coronaria , Tomografía Computarizada por Rayos X , Radioisótopos de Rubidio , Biomarcadores , Tomografía de Emisión de Positrones
4.
J Nucl Med ; 63(3): 431-437, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34244355

RESUMEN

Caffeine consumption before adenosine stress myocardial perfusion imaging (MPI) is known to affect the hemodynamic response and, thus, reduce the stress myocardial blood flow (MBF) and myocardial flow reserve (MFR) assessments. However, it is not clear if any sex-specific differences in the hemodynamic response after caffeine consumption exist. This study aimed to evaluate if such differences exist and, if so, their impact on MBF and MFR assessments. Methods: This study comprised 40 healthy volunteers (19 women). All volunteers underwent 4 serial rest/stress MPI sessions using 82Rb; 2 sessions were acquired without controlled caffeine consumption, and 2 sessions after oral ingestion of either 100 and 300 mg of caffeine or 200 and 400 mg of caffeine. For the caffeine imaging sessions, caffeine was ingested orally 1 h before the MPI scan. Results: Increase in plasma caffeine concentration (PCC) (mg/L) after consumption of caffeine was larger in women (MPI session without caffeine vs. MPI session with caffeine: women = 0.3 ± 0.2 vs. 5.4 ± 5.1, men = 0.1 ± 0.2 vs. 2.7 ± 2.6, both P < 0.001). Caffeine consumption led to reduced stress MBF and MFR assessments for men whereas no changes were reported for women (women [PCC < 1 mg/L vs. PCC ≥ 1 mg/L]: stress MBF = 3.3 ± 0.6 vs. 3.0 ± 0.8 mL/g/min, P = 0.07; MFR = 3.7 ± 0.6 vs. 3.5 ± 1.0, P = 0.35; men [PCC < 1 mg/L vs. PCC ≥ 1 mg/L]: stress MBF = 2.7 ± 0.7 vs. 2.1 ± 1.0 mL/g/min, P = 0.005; MFR = 3.8 ± 1.0 vs. 3.1 ± 1.4, P = 0.018). Significant differences in the stress MBF were observed for the 2 sexes (both P ≤ 0.001), whereas similar MFR was reported (both P ≥ 0.12). Conclusion: Associations between increases in PCC and reductions in stress MBF and MFR were observed for men, whereas women did not have the same hemodynamic response. Stress MBF was affected at lower PCCs in men than women.


Asunto(s)
Enfermedad de la Arteria Coronaria , Hiperemia , Imagen de Perfusión Miocárdica , Adenosina , Cafeína/farmacología , Circulación Coronaria , Femenino , Humanos , Masculino , Imagen de Perfusión Miocárdica/métodos , Tomografía de Emisión de Positrones , Caracteres Sexuales , Tomografía Computarizada por Rayos X
5.
Mol Pain ; 17: 17448069211059400, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34898306

RESUMEN

Substance P (SP) and calcitonin gene-related peptide (CGRP) have both been considered potential drug candidates in migraine therapy. In recent years, CGRP receptor inhibition has been established as an effective treatment, in particular as a prophylactic for chronic migraine. Curiously, inhibition of neurokinin receptor 1 (NK1R) failed to alleviate acute migraine attacks in clinical trials, and the neurokinins were consequently abandoned as potential antimigraine candidates. The reason behind this has remained enigmatic.Utilizing immunohistochemistry and semi-quantitative cell counts the expression of neurokinins and their associated receptors was examined in the rat trigeminal ganglion.Immunohistochemistry results revealed SP co-localization in CGRP positive neurons and C-fibres, where it mainly concentrated at boutons. Neurokinin A (NKA) was observed in a population of C-fibres and small neurons where it could co-localize with SP. In contrast, neurokinin B (NKB) did not co-localize with SP and was observed in large/medium sized neurons and Aδ-fibres. All neurokinin receptors (NK1-3R) were found to be expressed in a majority of trigeminal ganglion neurons and A-fibres.The functional release of SP and CGRP in the trigeminovascular system was stimulated with either 60 mM K+ or 100 nM capsaicin and measured with an enzyme-linked immunosorbent assay (ELISA). ELISA results established that SP can be released locally from trigeminovascular system. The released SP was comparatively minor compared to the CGRP release from stimulated dura mater, trigeminal ganglion neurons and fibres. We hypothesize that SP and CGRP signalling pathways may work in tandem to exacerbate painful stimuli in the TGV system.


Asunto(s)
Trastornos Migrañosos , Neuroquinina A , Animales , Péptido Relacionado con Gen de Calcitonina , Dolor , Ratas , Receptores de Péptido Relacionado con el Gen de Calcitonina , Ganglio del Trigémino
6.
Front Physiol ; 12: 652136, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34177610

RESUMEN

BACKGROUND: Calcitonin gene-related peptide (CGRP) dilates cranial arteries and triggers headache. The CGRP signaling pathway is partly dependent on activation of ATP-sensitive potassium (K ATP ) channels. Here, we investigated the effect of the K ATP channel blocker glibenclamide on CGRP-induced headache and vascular changes in healthy volunteers. METHODS: In a randomized, double-blind, placebo-controlled, cross-over study, 20 healthy volunteers aged 18-27 years were randomly allocated to receive an intravenous infusion of 1.5 µg/min CGRP after oral pretreatment with glibenclamide (glibenclamide-CGRP day) or placebo (placebo-CGRP day). The primary endpoints were the difference in incidence of headache and the difference in area under the curve (AUC) for headache intensity scores (0-14 h) between glibenclamide and placebo. The secondary endpoints were the difference in AUC for middle cerebral artery blood flow velocity (V MCA ), superficial temporal artery (STA) and radial artery (RA) diameter, facial flushing, heart rate (HR) and mean arterial blood pressure (MAP) (0-4 h) between glibenclamide and placebo. RESULTS: We found no significant difference in the incidence of headache between glibenclamide-CGRP day (14/20, 70%) and placebo-CGRP day (19/20, 95%) (P = 0.06). The AUC for headache intensity, V MCA , STA, RA, facial skin blood flow, HR, and MAP did not differ between glibenclamide-CGRP day compared to placebo-CGRP day (P > 0.05). CONCLUSION: Pretreatment with a non-selective K ATP channel inhibitor glibenclamide did not attenuate CGRP-induced headache and hemodynamic changes in healthy volunteers. We suggest that CGRP-induced responses could be mediated via activation of specific isoforms of sulfonylurea receptor subunits of K ATP channel.

7.
J Am Heart Assoc ; 10(9): e018716, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33870711

RESUMEN

Background Increased potassium intake lowers blood pressure in patients with hypertension, but increased potassium intake also elevates plasma concentrations of the blood pressure-raising hormone aldosterone. Besides its well-described renal effects, aldosterone is also believed to have vascular effects, acting through mineralocorticoid receptors present in endothelial and vascular smooth muscle cells, although mineralocorticoid receptors-independent actions are also thought to be involved. Methods and Results To gain further insight into the effect of increased potassium intake and potassium-stimulated hyperaldosteronism on the human cardiovascular system, we conducted a randomized placebo-controlled double-blind crossover study in 25 healthy normotensive men, where 4 weeks treatment with a potassium supplement (90 mmol/day) was compared with 4 weeks on placebo. At the end of each treatment period, we measured potassium and aldosterone in plasma and performed an angiotensin II (AngII) infusion experiment, during which we assessed the aldosterone response in plasma. Hemodynamics were also monitored during the AngII infusion using ECG, impedance cardiography, finger plethysmography (blood pressure-monitoring), and Doppler ultrasound. The study showed that higher potassium intake increased plasma potassium (mean±SD, 4.3±0.2 versus 4.0±0.2 mmol/L; P=0.0002) and aldosterone (median [interquartile range], 440 [336-521] versus 237 [173-386] pmol/L; P<0.0001), and based on a linear mixed model for repeated measurements, increased potassium intake potentiated AngII-stimulated aldosterone secretion (P=0.0020). In contrast, the hemodynamic responses (blood pressure, total peripheral resistance, cardiac output, and renal artery blood flow) to AngII were similar after potassium and placebo. Conclusions Increased potassium intake potentiates AngII-stimulated aldosterone secretion without affecting systemic cardiovascular hemodynamics in healthy normotensive men. Registration EudraCT Number: 2013-004460-66; URL: https://www.ClinicalTrials.gov; Unique identifier: NCT02380157.


Asunto(s)
Angiotensina II/administración & dosificación , Presión Sanguínea/fisiología , Hipertensión/terapia , Potasio en la Dieta/farmacocinética , Potasio/sangre , Adulto , Aldosterona/sangre , Biomarcadores/sangre , Estudios Cruzados , Método Doble Ciego , Femenino , Estudios de Seguimiento , Voluntarios Sanos , Humanos , Hipertensión/fisiopatología , Infusiones Intravenosas , Masculino , Persona de Mediana Edad , Resultado del Tratamiento , Vasoconstrictores/administración & dosificación , Adulto Joven
8.
Hum Exp Toxicol ; 40(6): 940-951, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33249856

RESUMEN

Our previous studies on cannabinoid type1 receptor (CB1R) activation on Methamphetamine (METH)-induced neurodegeneration and locomotion impairments in male rats suggest an interaction between CB1Rs and METH. However, the role of these receptors in METH-neurotoxicity has not been fully identified. Therefore, the purpose of the present study is to investigate the involvement of CB1Rs in these effects. We conducted an electrophysiological study to evaluate functional interactions between METH and CB1Rs using whole-cell patch current clamp recording. Furthermore, we designed the Nissl staining protocol to assess the effect of METH on the basic cerebellar Purkinje cell structure. Our findings revealed that METH significantly increased the action potential half-width, spontaneous interspike intervals, first spike latency, and decreased the rebound action potential and spontaneous firing frequency. Using CB1R agonist and antagonist, our results showed a significant interaction with some of the electrophysiological alterations induced by METH. Further, Nissl staining revealed that the exposure to the combination of METH and SR141716A resulted in the necrotic cell death. Results of the current study raises the possibility that METH consumption profoundly affect the intrinsic membrane properties of cerebellar Purkinje neurons and cannabinoid system manipulations may counteract some of these effects. In summary, our findings provide further insights into the modulatory role of the endocannabinoid system in METH-induced neurologic changes, which can be used in the development of potential therapeutic interventions for METH dependence.


Asunto(s)
Agonistas de Receptores de Cannabinoides/farmacología , Agonistas de Receptores de Cannabinoides/uso terapéutico , Fenómenos Electrofisiológicos/efectos de los fármacos , Metanfetamina/toxicidad , Células de Purkinje/citología , Células de Purkinje/efectos de los fármacos , Animales , Masculino , Modelos Animales , Ratas
10.
Front Physiol ; 11: 667, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32655412

RESUMEN

Endothelial cell dysfunction and vessel stiffening are associated with a worsened prognosis in diabetic patients with cardiovascular diseases. The present study hypothesized that sex impacts endothelial dysfunction and structural changes in arteries from diabetic mice. In diabetic (db/db) and normoglycaemic (db/db+) mice, the mechanical properties were investigated in pressurized isolated left anterior descending coronary arteries and aorta segments that were subjected to tensile testing. Functional studies were performed on wire-mounted vascular segments. The male and female db/db mice were hyperglycaemic and had markedly increased body weight. In isolated aorta segments without the contribution of smooth muscle cells, load to rupture, viscoelasticity, and collagen content were decreased suggesting larger distensibility of the arterial wall in both male and female db/db mice. In male db/db aorta segments with smooth muscle cell contribution, lumen diameter was smaller and the passive stretch-tension curve was leftward-shifted, while they were unaltered in female db/db aorta segments versus control db/db+ mice. In contrast to female db/db mice, coronary arteries from male db/db mice had altered stress-strain relationships and increased distensibility. Transthoracic echocardiography revealed a dilated left ventricle with unaltered cardiac output, while aortic flow velocity was decreased in male db/db mice. Impairment of acetylcholine relaxation was aggravated in aorta from female db/db compared to control and male db/db mice, while impairment of sodium nitroprusside relaxations was only observed in aorta from male db/db mice. The remodeling in the coronary arteries and aorta suggests an adaptation of the arterial wall to the reduced flow velocity with sex-specific differences in the passive properties of aorta and coronary arteries. The findings of less distensible arteries and more pronounced endothelial dysfunction in female compared to male diabetic mice may have implications for the observed higher incidence of macrovascular complications in diabetic women.

11.
Cephalalgia ; 40(12): 1296-1309, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32486909

RESUMEN

BACKGROUND: Several neurotransmitters are expressed in the neurons of the trigeminal ganglion. One such signalling molecule is the pituitary adenylate cyclase-activating peptide (PACAP). PACAP signalling has been suggested to have a possible role in the pathophysiology of primary headaches. OBJECTIVE: The present study was designed to investigate the relationship between PACAP and calcitonin gene-related peptide, currently the two most relevant migraine peptides. METHODS: In the current study, we used ELISA to investigate PACAP and calcitonin gene-related peptide release in response to 60 mM K+ or capsaicin using a rat hemi-skull model. We combined this analysis with qPCR and immunohistochemistry to study the expression of PACAP and calcitonin gene-related peptide receptors and ligands. RESULTS: Calcitonin gene-related peptide (CGRP) is released from the trigeminal ganglion and dura mater. In contrast, PACAP is only released from the trigeminal ganglion. We observed a weak correlation between the stimulated release of the two neuropeptides. PACAP-38 immunoreactivity was expressed alone and in a subpopulation of neurons in the trigeminal ganglion that also store calcitonin gene-related peptide. The receptor subtype PAC1 was mainly expressed in the satellite glial cells (SGCs), which envelop the neurons in the trigeminal ganglion, in some neuronal processes, inside the Aδ-fibres and in the outermost layer of the myelin sheath that envelopes the Aδ-fibres. CONCLUSION: Unlike CGRP, PACAP is only released within the trigeminal ganglion. This raises the question of whether a migraine therapy aimed at preventing peripheral PACAP signalling would be as successful as the CGRP signalling targeted treatments.


Asunto(s)
Péptido Relacionado con Gen de Calcitonina/metabolismo , Duramadre/metabolismo , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo , Ganglio del Trigémino/metabolismo , Animales , Masculino , Trastornos Migrañosos/fisiopatología , Ratas , Ratas Sprague-Dawley
12.
Artículo en Inglés | MEDLINE | ID: mdl-32596729

RESUMEN

BACKGROUND: Increased potassium intake lowers blood pressure (BP) in hypertensive patients. The underlying mechanism is not fully understood but must be complex because increased potassium intake elevates circulating concentrations of the BP-raising hormone aldosterone. METHODS: In a randomized placebo-controlled crossover study in 25 normotensive men, we investigated the effect of 4 weeks of potassium supplement (90 mmol/day) compared with 4 weeks of placebo on the renin-angiotensin-aldosterone system (RAAS), urine composition and 24-h ambulatory BP. Vascular function was also assessed through wire myograph experiments on subcutaneous resistance arteries from gluteal fat biopsies. RESULTS: Higher potassium intake increased urinary potassium excretion (144.7 ± 28.7 versus 67.5 ± 25.5 mmol/24-h; P < 0.0001) and plasma concentrations of potassium (4.3 ± 0.2 versus 4.0 ± 0.2 mmol/L; P = 0.0002), renin {mean 16 [95% confidence interval (CI) 12-23] versus 11 [5-16] mIU/L; P = 0.0047}, angiotensin II [mean 10.0 (95% CI 6.2-13.0) versus 6.1 (4.0-10.0) pmol/L; P = 0.0025] and aldosterone [mean 440 (95% CI 336-521) versus 237 (173-386) pmol/L; P < 0.0001]. Despite RAAS activation, systolic BP (117.6 ± 5.8 versus 118.2 ± 5.2 mmHg; P = 0.48) and diastolic BP (70.8 ± 6.2 versus 70.8 ± 6.3 mmHg; P = 0.97) were unchanged. In the wire myograph experiments, higher potassium intake did not affect endothelial function as assessed by acetylcholine [logarithmically transformed half maximal effective concentration (pEC50): 7.66 ± 0.95 versus 7.59 ± 0.85; P = 0.86] and substance P (pEC50: 8.42 ± 0.77 versus 8.41 ± 0.89; P = 0.97) or vascular smooth muscle cell reactivity as assessed by angiotensin II (pEC50: 9.01 ± 0.86 versus 9.02 ± 0.59; P = 0.93) and sodium nitroprusside (pEC50: 7.85 ± 1.07 versus 8.25 ± 1.32; P = 0.25) but attenuated the vasodilatory response of retigabine (pEC50: 7.47 ± 1.16 versus 8.14 ± 0.90; P = 0.0084), an activator of Kv7 channels. CONCLUSIONS: Four weeks of increased potassium intake activates the RAAS in normotensive men without changing BP and this is not explained by improved vasodilatory responses ex vivo.

13.
Eur J Pharmacol ; 881: 173205, 2020 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-32442540

RESUMEN

Vascular tissue consists of endothelial cells, vasoactive smooth muscle cells and perivascular nerves. The perivascular sensory neuropeptide CGRP has demonstrated potent vasodilatory effects in any arterial vasculature examined so far, and a local protective CGRP-circuit of sensory nerve terminal CGRP release and smooth muscle cell CGRP action is evident. The significant vasodilatory effect has shadowed multiple other effects of CGRP in the vascular tissue and we therefore thoroughly review vascular actions of CGRP on endothelial cells, vascular smooth muscle cells and perivascular nerve terminals. The actions beyond vasodilation includes neuronal re-uptake and neuromodulation, angiogenic, proliferative and antiproliferative, pro- and anti-inflammatory actions which vary depending on the target cell and anatomical location. In addition to the classical perivascular nerve-smooth muscle CGRP circuit, we review existing evidence for a shadowed endothelial autocrine pathway for CGRP. Finally, we discuss the impact of local and systemic actions of CGRP in vascular regulation and protection from hypertensive and ischemic heart conditions with special focus on therapeutic CGRP agonists and antagonists.


Asunto(s)
Arterias/metabolismo , Péptido Relacionado con Gen de Calcitonina/metabolismo , Enfermedades Cardiovasculares/metabolismo , Receptores de Péptido Relacionado con el Gen de Calcitonina/metabolismo , Vasodilatación , Animales , Arterias/efectos de los fármacos , Arterias/inervación , Péptido Relacionado con Gen de Calcitonina/uso terapéutico , Fármacos Cardiovasculares/uso terapéutico , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/fisiopatología , Antagonistas de Hormonas/uso terapéutico , Humanos , Receptores de Péptido Relacionado con el Gen de Calcitonina/efectos de los fármacos , Transducción de Señal , Vasodilatación/efectos de los fármacos
14.
Eur J Pharmacol ; 875: 173033, 2020 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-32097658

RESUMEN

CGRP is a potent dilator of arteries and despite rich perivascular CGRP immunoreactivity in both arteries and veins the role of CGRP in veins remains unknown. The aim of the current study was to compare perivascular CGRP immunoreactivity and expression of CGRP receptor mRNA and CGRP receptor immunoreactivity in rat mesenteric arteries and veins. Furthermore, potential vasomotor effects of CGRP were explored in veins. Immunohistochemical studies reproduced rich perivascular CGRP innervation in arteries and in veins. Further, the presence of mRNA encoding the CGRP receptor subunits, CLR and RAMP1, were demonstrated in both arteries and veins using qPCR. Before comparing the vasoactive effects of CGRP in arteries and veins, we aimed to identify an experimental setting where vasomotor responses could be detected. Therefore, a length-tension study was performed in artery and vein segments. Whereas the arteries showed the characteristic monophasic curve with an IC/IC100 value of 0.9, surprisingly the veins showed a biphasic response with two corresponding IC/IC100 values of 0.7 and 0.9, respectively. There was no significant difference between fresh and cultured vasculature segments. To investigate whether a potential tension-dependent CGRP-induced dilation of veins caused the decline between the two IC/IC100 peaks, a second study was performed, with the CGRP receptor antagonist, BIBN4096BS (olcegepant) and the sensory nerve secretagogue, capsaicin. No significant vascular role of endogenous perivascular CGRP in mesenteric veins could be concluded, and a potential role of the rich perivascular CGRP and CGRP receptor abundancy in veins remains unknown.


Asunto(s)
Péptido Relacionado con Gen de Calcitonina/metabolismo , Arterias Mesentéricas/metabolismo , Vasodilatación/efectos de los fármacos , Venas/metabolismo , Animales , Antagonistas del Receptor Peptídico Relacionado con el Gen de la Calcitonina/farmacología , Proteína Similar al Receptor de Calcitonina/genética , Proteína Similar al Receptor de Calcitonina/metabolismo , Dipéptidos/farmacología , Masculino , Arterias Mesentéricas/efectos de los fármacos , Piperazinas , Quinazolinas/farmacología , ARN Mensajero/análisis , ARN Mensajero/metabolismo , Ratas , Proteína 1 Modificadora de la Actividad de Receptores/genética , Proteína 1 Modificadora de la Actividad de Receptores/metabolismo , Venas/efectos de los fármacos
15.
Int J Mol Sci ; 21(4)2020 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-32079247

RESUMEN

: Human α-calcitonin gene-related peptide (h-α-CGRP) is a highly potent vasodilator peptide that belongs to the family of calcitonin peptides. There are two forms of CGRP receptors in humans and rodents: α-CGRP receptor predominately found in the cardiovascular system and ß-CGRP receptor predominating in the gastrointestinal tract. The CGRP receptors are primarily localized to C and Aδ sensory fibers, where they are involved in nociceptive transmission and migraine pathophysiology. These fibers are found both peripherally and centrally, with extensive perivascular location. The CGRP receptors belong to the class B G-protein-coupled receptors, and they are primarily associated to signaling via Gα proteins. The objectives of the present work were: (i) synthesis of three single-labelled fluorescent analogues of h-α-CGRP by 9-fluorenylmethyloxycarbonyl (Fmoc)-based solid-phase peptide synthesis, and (ii) testing of their biological activity in isolated human, mouse, and rat arteries by using a small-vessel myograph setup. The three analogues were labelled with 5(6)-carboxyfluorescein via the spacer 6-aminohexanoic acid at the chain of Lys24 or Lys35. Circular dichroism (CD) experiments were performed to obtain information on the secondary structure of these fluorescently labelled peptides. The CD spectra indicated that the folding of all three analogues was similar to that of native α-CGRP. The three fluorescent analogues of α-CGRP were successfully prepared with a purity of >95%. In comparison to α-CGRP, the three analogues exhibited similar efficacy, but different potency in producing a vasodilator effect. The analogue labelled at the N-terminus proved to be the most readily synthesized, but it was found to possess the lowest vasodilator potency. The analogues labelled at Lys35 or Lys24 exhibited an acceptable reduction in potency (i.e., 3-5 times and 5-10 times less potent, respectively), and thus they have potential for use in further investigations of receptor internalization and neuronal reuptake.


Asunto(s)
Péptido Relacionado con Gen de Calcitonina/análogos & derivados , Péptido Relacionado con Gen de Calcitonina/metabolismo , Colorantes Fluorescentes , Vasodilatadores/química , Vasodilatadores/farmacología , Potenciales de Acción , Ácido Aminocaproico , Animales , Dicroismo Circular , Fluoresceínas , Humanos , Masculino , Ratones , Trastornos Migrañosos , Estructura Secundaria de Proteína , Ratas , Ratas Sprague-Dawley , Receptores de Péptido Relacionado con el Gen de Calcitonina/metabolismo
16.
Front Pharmacol ; 11: 619152, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33643042

RESUMEN

Endothelial cell dysfunction and fibrosis are associated with worsening of the prognosis in patients with cardiovascular disease. Pirfenidone has a direct antifibrotic effect, but vasodilatation may also contribute to the effects of pirfenidone. Therefore, in a first study we investigated the mechanisms involved in the relaxant effect of pirfenidone in rat intrapulmonary arteries and coronary arteries from normal mice. Then in a second study, we investigated whether pirfenidone restores endothelial function in the aorta and mesenteric arteries from diabetic animals. From 16-18-week old normal male C57BL/6 mice and normoglycemic (db/db+), and type 2 diabetic (db/db) male and female mice, arteries were mounted in microvascular isometric myographs for functional studies, and immunoblotting was performed. In rat pulmonary arteries and mouse coronary arteries, pirfenidone induced relaxations, which were inhibited in preparations without endothelium. In mouse coronary arteries, pirfenidone relaxation was inhibited in the presence of a nitric oxide (NO) synthase inhibitor, NG-nitro-l-arginine (L-NOARG), a blocker of large-conductance calcium-activated potassium channels (BKCa), iberiotoxin, and a blocker of KV7 channels, XE991. Patch clamp studies in vascular smooth muscle revealed pirfenidone increased iberiotoxin-sensitive current. In the aorta and mesenteric small arteries from diabetic db/db mice relaxations induced by the endothelium-dependent vasodilator, acetylcholine, were markedly reduced compared to db/db + mice. Pirfenidone enhanced the relaxations induced by acetylcholine in the aorta from diabetic male and female db/db mice. An opener of KV7 channels, flupirtine, had the same effect as pirfenidone. XE991 reduced the effect of pirfenidone and flupirtine and further reduced acetylcholine relaxations in the aorta. In the presence of iberiotoxin, pirfenidone still increased acetylcholine relaxation in aorta from db/db mice. Immunoblotting for KV7.4, KV7.5, and BKCa channel subunits were unaltered in aorta from db/db mice. Pirfenidone failed to improve acetylcholine relaxation in mesenteric arteries, and neither changed acetylcholine-induced transient decreases in blood pressure in db/db+ and db/db mice. In conclusion, pirfenidone vasodilates pulmonary and coronary arteries. In coronary arteries from normal mice, pirfenidone induces NO-dependent vasodilatation involving BKCa and KV7 channels. Pirfenidone improves endothelium-dependent vasodilatation in aorta from diabetic animals by a mechanism involving voltage-gated KV7 channels, a mechanism that may contribute to the antifibrotic effect of pirfenidone.

17.
J Headache Pain ; 20(1): 105, 2019 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-31718551

RESUMEN

BACKGROUND: Monoclonal antibodies (mAbs) towards CGRP or the CGRP receptor show good prophylactic antimigraine efficacy. However, their site of action is still elusive. Due to lack of passage of mAbs across the blood-brain barrier the trigeminal system has been suggested a possible site of action because it lacks blood-brain barrier and hence is available to circulating molecules. The trigeminal ganglion (TG) harbors two types of neurons; half of which store CGRP and the rest that express CGRP receptor elements (CLR/RAMP1). METHODS: With specific immunohistochemistry methods, we demonstrated the localization of CGRP, CLR, RAMP1, and their locations related to expression of the paranodal marker contactin-associated protein 1 (CASPR). Furthermore, we studied functional CGRP release separately from the neuron soma and the part with only nerve fibers of the trigeminal ganglion, using an enzyme-linked immunosorbent assay. RESULTS: Antibodies towards CGRP and CLR/RAMP1 bind to two different populations of neurons in the TG and are found in the C- and the myelinated Aδ-fibers, respectively, within the dura mater and in trigeminal ganglion (TG). CASPR staining revealed paranodal areas of the different myelinated fibers inhabiting the TG and dura mater. Double immunostaining with CASPR and RAMP1 or the functional CGRP receptor antibody (AA58) revealed co-localization of the two peptides in the paranodal region which suggests the presence of the CGRP-receptor. Double immunostaining with CGRP and CASPR revealed that thin C-fibers have CGRP-positive boutons which often localize in close proximity to the nodal areas of the CGRP-receptor positive Aδ-fibers. These boutons are pearl-like synaptic structures, and we show CGRP release from fibers dissociated from their neuronal bodies. In addition, we found that adjacent to the CGRP receptor localization in the node of Ranvier there was PKA immunoreactivity (kinase stimulated by cAMP), providing structural possibility to modify conduction activity within the Aδ-fibers. CONCLUSION: We observed a close relationship between the CGRP containing C-fibers and the Aδ-fibers containing the CGRP-receptor elements, suggesting a point of axon-axon interaction for the released CGRP and a site of action for gepants and the novel mAbs to alleviate migraine.


Asunto(s)
Péptido Relacionado con Gen de Calcitonina/metabolismo , Nódulos de Ranvier/metabolismo , Proteína 1 Modificadora de la Actividad de Receptores/metabolismo , Receptores de Péptido Relacionado con el Gen de Calcitonina/metabolismo , Ganglio del Trigémino/metabolismo , Animales , Axones , Antagonistas del Receptor Peptídico Relacionado con el Gen de la Calcitonina/metabolismo , Duramadre/metabolismo , Inmunohistoquímica , Masculino , Trastornos Migrañosos/fisiopatología , Fibras Nerviosas/metabolismo , Neuronas/metabolismo , Ratas , Ratas Sprague-Dawley , Transducción de Señal
18.
Pharmacology ; 104(5-6): 332-341, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31484177

RESUMEN

AIM: The aim of present study is to investigate the binding characteristics of non-peptide calcitonin gene-related peptide (CGRP) receptor antagonists (i.e., gepants) in the brain membranes of rat, pig and human. METHODS: The interaction of available gepants with the CGRP receptor was studied in the brain membranes of 3 different species using a radioligand competitive binding assay. In addition, the distribution of CGRP and its receptor component receptor activity modifying protein 1 (RAMP1) in rat cerebellum and cortex was explored using immunohistochemistry. RESULTS: All gepants, except SB268262, displaced 100% of the radioligand specific binding in the brain tissue of all 3 species and showed highest affinity for CGRP receptors in human brain as compared to rat and pig brain membranes. Furthermore, radioligand binding studies revealed the presence of higher CGRP receptor density in human cerebellum compared to human cortex. The morphology, size and density of CGRP immunoreactive cells suggest that all cerebral cortical neurons were positive for CGRP. Slender receptor immunoreactive fibres were found spanning through the entire cortex. CGRP immunoreactivity was displayed in the cell soma of cerebellar Purkinje cells and in large neurons in the medial cerebellar nucleus. RAMP1 was found on the surface of the Purkinje cells and in parallel fibres, indicating presence in the granule cell axons. CONCLUSION: Cerebellum and cerebral cortex are rich in CGRP and CGRP receptors, which can be antagonized by gepants. However, all gepants display higher affinity for human CGRP receptors as compared to rat and pig CGRP receptors. Furthermore, human cerebellum seems to express higher density of CGRP receptors.


Asunto(s)
Antagonistas del Receptor Peptídico Relacionado con el Gen de la Calcitonina/farmacología , Péptido Relacionado con Gen de Calcitonina/metabolismo , Cerebelo/metabolismo , Corteza Cerebral/metabolismo , Receptores de Péptido Relacionado con el Gen de Calcitonina/metabolismo , Anciano , Anciano de 80 o más Años , Animales , Unión Competitiva , Femenino , Humanos , Masculino , Ensayo de Unión Radioligante , Ratas Wistar , Especificidad de la Especie , Porcinos
19.
Diab Vasc Dis Res ; 16(6): 539-548, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31364402

RESUMEN

Besides being a metabolic disease, diabetes is considered a vascular disease as many of the complications relate to vascular pathologies. The aim of this study was to investigate how vascular tone and reactivity and vascular cell metabolism were affected in type 2 diabetes mellitus and whether ß-hydroxybutyrate could have a positive effect as alternative energy substrate. Isolated mesenteric arteries of db/db and control mice were incubated in media containing [U-13C]glucose or [U-13C]ß-hydroxybutyrate, and tissue extracts were analysed by mass spectrometry. Functional characterization was performed by wire myography to assess vasodilation and vasocontraction. Hypermetabolism of glucose and ß-hydroxybutyrate was observed for mesenteric arteries of db/db mice; however, hypermetabolism was significant only with ß-hydroxybutyrate as energy substrate. The functional characterization showed impaired endothelial-dependent vasodilation in mesenteric arteries of the db/db mice, whereas the contractility was unaffected. This study provides evidence that the endothelial cells are impaired, whereas the vascular smooth muscle cells are more robust and seemed less affected in the db/db mouse. Furthermore, the results indicate that hypermetabolism of energy substrates may be due to adaptive changes in the mesenteric arteries.


Asunto(s)
Diabetes Mellitus Tipo 2/complicaciones , Angiopatías Diabéticas/etiología , Endotelio Vascular/metabolismo , Metabolismo Energético , Glucosa/metabolismo , Arterias Mesentéricas/metabolismo , Vasodilatación , Ácido 3-Hidroxibutírico/metabolismo , Animales , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatología , Angiopatías Diabéticas/metabolismo , Angiopatías Diabéticas/fisiopatología , Modelos Animales de Enfermedad , Endotelio Vascular/fisiopatología , Arterias Mesentéricas/fisiopatología
20.
Mutagenesis ; 34(2): 203-214, 2019 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-30852617

RESUMEN

Vegetable carbon (E153) and titanium dioxide (E171) are widely used as black and white food colour additives. The aim of this study was to assess gastrointestinal tight junction and systemic genotoxic effects in rats following exposure to E153 and E171 for 10 weeks by oral gavage once a week. The expression of tight junction proteins was assessed in intestinal tissues. Levels of DNA strand breaks, oxidatively damaged DNA and telomere length were assessed in secondary organs. Hydrodynamic suspensions of E153 and E173 indicated mean particles sizes of 230 and 270 nm, respectively, and only E153 gave rise to intracellular production of reactive oxygen species in colon epithelial (Caco-2) cells. Rats exposed to E153 (6.4 mg/kg/week) or E171 (500 mg/kg/week) had decreased gene expression of the tight junction protein TJP1 (P < 0.05). E153 (6.4 mg/kg/week) also decreased OCLN (P < 0.05) in the colon and occludin protein expression in the small intestine (P < 0.05). Furthermore, E153 or E171 exposed rats had shorter telomeres in the lung (P < 0.05). Plasma from particle-exposed rats also produced telomere shortening in cultured lung epithelial cells. There were unaltered levels of oxidatively damaged DNA in the liver and lung and no changes in the DNA repair activity of oxidatively damaged DNA in the lung. Altogether, these results indicate that intragastric exposure to E153 and E171 is associated with reduced tight junction protein expression in the intestinal barrier and telomere length shortening in the lung in rats.


Asunto(s)
Daño del ADN/efectos de los fármacos , Aditivos Alimentarios/toxicidad , Intestinos/efectos de los fármacos , Pulmón/efectos de los fármacos , Telómero/efectos de los fármacos , Telómero/metabolismo , Uniones Estrechas/efectos de los fármacos , Titanio/toxicidad , Células A549 , Animales , Células CACO-2 , Carbono/toxicidad , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Femenino , Humanos , Pulmón/metabolismo , Nanopartículas/toxicidad , Nanopartículas/ultraestructura , Ocludina/genética , Ocludina/metabolismo , Tamaño de la Partícula , Ratas , Ratas Zucker , Especies Reactivas de Oxígeno/metabolismo , Estómago , Telómero/genética , Uniones Estrechas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA